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Abstract—Space-air-ground integrated network (SAGIN),
which integrates satellite systems, aerial networks, and terrestrial
communications, offers ubiquitous coverage for a multitude
of applications. Nevertheless, the highly dynamic and open
nature of SAGIN increases the network’s vulnerability. Hence,
zero-trust security, operating on the principle of “never trust,
always verify”, holds the significant potential of securing SAGIN.
However, implementing zero-trust SAGIN in practice presents
three primary challenges: 1) understanding massive unstruc-
tured threat information across diverse domains, 2) performing
adaptive security assessments, and 3) making in-depth security
decisions. This motivates us to propose SAG-Attack and LLM-SA
to enhance zero-trust SAGIN. SAG-Attack serves as a simulator
that aims to mimic various attacks in SAGIN. Our LLM-SA is
a novel situation awareness method that explores the multiple
agents of large language model (LLM). Specifically, the output
logs of SAG-Attack will be fed into LLM-SA, and LLM-SA fuses
vast amounts of heterogeneous threat information from various
domains, thus tackling the first challenge. Then, our LLM-
SA relies on multiple LLM-based agents to perform adaptive
security assessments, utilizing the chain-of-thought capabilities
of LLMs to automatically generate in-depth defense strategies,
thereby addressing the second and third challenges. Experiments
on five benchmarks demonstrate the superiority of the proposed
SAG-Attack and LLM-SA. Notably, our method based on open-
sourced Llama3-8B even outperforms ChatGPT-4 under the same
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setting, despite involving significantly fewer parameters. To foster
further research in this area, we will release our platform to the
community, facilitating the advancement of zero-trust SAGIN.

Index Terms—Space-air-ground integrated network, zero trust,
LLM-based multi-agent, situation awareness.

I. INTRODUCTION

A. Background

THE International Telecommunication Union (ITU) has
recently published the framework of the sixth gener-

ation of communications, commonly known as 6G. Two
new usage scenarios highlighted in the framework are mas-
sive communications and ubiquitous connectivity. Space-air-
ground integrated network (SAGIN) [1], [2], which integrates
satellite systems, aerial networks, and terrestrial networks,
offers ubiquitous coverage for numerous applications. As a
next-generation wireless networking paradigm, SAGIN has
attracted increasing attention. Figure 1 illustrates the com-
ponents of SAGIN: the space-based networks comprising
geostationary Earth orbit (GEO) satellites, medium Earth orbit
(MEO) satellites, and low Earth orbit (LEO) satellites, the air-
based networks formed by multiple unmanned aerial vehicle
(UAV) networks, and the ground-based networks including
numerous wireless local area networks, cellular networks, and
Ad Hoc networks.

While SAGIN’s highly dynamic and open environment
offers considerable benefits for global coverage, seamless com-
munication, and emergency recovery, it also presents severe
security issues, causing the network to be extremely fragile
under various malicious attacks. Figure 1 illustrates that a
malicious user can utilize jamming attacks [3] to interfere with
wireless communications between LEO and ground station
gateways. Unauthorized users can eavesdrop on confidential
satellite information by intercepting wireless network traffic
[4]. Other threats, including Distributed Denial-of-Service
(DDoS) [5] and spoofing attacks [6], [7], can lead to service
unavailability and data leakage of safe-critical applications
such as smart health and internet of vehicles.

B. Motivation

The aforementioned vulnerability of SAGIN necessitates a
redesign of the network security architecture against various
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Fig. 1. Illustration of various attacks in space-air-ground integra jamming,
eavesdropping, and spoofing attacks, where SAGIN integrates satellite sys-
tems, aerial networks, and terrestrial networks.

attacks under heterogeneous and dynamic environments.
ITU also highlighted that security is one of the principles
of next-generation networking [8]. The recently proliferated
zero-trust paradigm [9], [10], [11], operating on the concept of
“never trust, always verify”, relies on continuous verification
with context-aware, dynamic, and intelligent authentication
schemes [12], [13], [14], thereby holding the promise of
mitigating various risks in SAGIN. However, implementing
zero-trust architecture within SAGIN presents three primary
challenges:

1) Understanding massive unstructured threat data:
Massive applications and devices in SAGIN, such as
the Internet of Things (IoT) and mobile equipment,
consistently generate huge amounts of context data,
including system logs and threat information. It is chal-
lenging for a zero-trust SAGIN system to explore these
massive unstructured data to understand the underlying
interactions between diverse cues from various domains.

2) Performing adaptive security assessments: The
assessment score [13], [15], [16] indicates the threat
level of SAGIN and can facilitate access control deci-
sions of zero-trust methods. It is challenging to obtain
accurate scores due to the dynamics and heterogeneity
of SAGIN with tens of thousands of devices involved in
the network.

3) Making in-depth security decisions: There are massive
threats in SAGIN that present complex interactions
[17]. It is challenging for existing rule-based or
deep learning-based defense strategies to capture such
intricate relationships for making comprehensive and in-
depth decisions [18], [19].

C. Our Method

The aforementioned issues motivate us to propose SAG-
Attack and Large Language Model-based Situation Awareness
(LLM-SA). LLM-SA is a novel situation awareness method
that explores LLM-based agents to enhance zero-trust SAGIN.
We outline six high-level design principles for SAG-Attack
and LLM-SA to tackle the three challenges.

1) Adaptive: Compared to traditional perimeter-based sit-
uation awareness, the one for zero-trust SAGIN should

be adaptive to fit the dynamic and open environments
across space, air, and ground network segments.

2) Learnable: An LLM or deep-learning component is
expected to be fine-tuned on unstructured threat data
generated in SAGIN to meet customized security
requirements.

3) Collaborative: As SAGIN works decentralized, the
awareness modules for zero-trust SAGIN should be
collaborative to make more comprehensive decisions.

4) Pluggable: Awareness components are expected
to be pluggable for configuration, facilitating an
administrator’s replacement of modules for customized
security settings.

5) Large-scale: As SAGIN involves thousands of devices
and connections, the awareness method should be able
to extract key features from massive threat information.

6) Efficient: The situation awareness method should be
efficient enough to generate timely responses in large-
scale SAGIN for massive threats across various domains.

Keeping the above goals in mind, we first design and
implement SAG-Attack, a SAGIN simulator that mimics large-
scale communications and threats across satellite networks,
aerial networks, and terrestrial networks on the ns-3 [20]
platform. The framework also involves a learnable neural
component that can detect threat information in various
domains, and this unstructured data will be fed into the
proposed situation awareness method LLM-SA. Our LLM-SA
first learns to extract salient attack features from information
generated by SAG-Attack and then relies on multiple LLM-
based agents to measure the threat level and generate defense
strategies. For the adaptive and learnable goals, we can fine-
tune LLMs for alignment with various SAGINs. These tunable
LLMs are collaborative and pluggable and can be replaced to
meet customized configurations in highly dynamic network
environments, thus satisfying the second and third design
principles. Finally, the output of LLM-SA will be fed into
a zero-trust engine for authentication and security automation.
Experiments on large-scale network simulation and real-world
tests show the effectiveness of our proposed SAG-Attack and
LLM-SA. Our code is publically available.1

D. Main Contributions

The main contributions of this paper are three-fold:
• SAG-Attack Simulator: We design and implement SAG-

Attack, a novel simulator that can mimic various attacks
in large-scale SAGIN. Our SAG-Attack consists of four
components: satellite networks, UAV networks, ground-
based networks, as well as a network monitor that collects
threat information from various domains. We additionally
develop the physical protocol DVB-S2X [21] for LEO
satellites to facilitate the simulation of various attacks in
satellite networks, as the implementation of the protocol
is not publicly available in the ns-3 platform.

• LLM-SA: We present LLM-SA, a novel situation aware-
ness method that relies on LLM-based agents for

1https://github.com/caoxinye/LLM-SA\#
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zero-trust SAGIN. Specifically, the proposed LLM-SA
summarizes the massive threat logs with an LLM, then
proceeds to build correlations between attacks and extract
key features with a security-weighted Principal Com-
ponent Analysis (SW-PCA) algorithm, thus properly
tracking the first challenge. Multiple LLM-based agents
are employed to address the second and third challenges
raised in Section I-B. We combine our agents with a
mathematical method to ensure the efficiency of the
LLM-SA. Our SAG-Attack and LLM-SA also meet the
six criteria discussed in Section I-C. To the best of our
knowledge, we are the first to explore LLM-based agents
to enhance situation awareness of zero-trust SAGIN.

• Experiments: We conduct extensive experiments on four
public benchmarks to show the effectiveness of the pro-
posed SAG-Attack simulator and LLM-SA, yielding the
state-of-the-art defense for zero-trust SAGIN. We also
build a more comprehensive dataset on the SAG-Attack
simulator, and such a dataset can serve as a benchmark for
zero-trust SAGIN. Furthermore, we conduct three types
of cyberattacks on real-world tests to demonstrate the
practical potential of LLM-SA. Finally, we provide a case
study to visually demonstrate the detailed work procedure
of the proposed LLM-SA and give some insightful dis-
cussions based on our observations.

E. Related Work

1) Zero Trust in SAGIN: Zero-trust architecture has
emerged as a pivotal paradigm in the field of cybersecurity
[9], [10], [11]. Numerous studies have investigated multi-factor
continuous authentication for zero trust [12], [13], [14]. With
regard to zero trust in satellite networks, Fu et al. devised
a continuous authentication mechanism for satellite networks
[22]. Toward zero trust in air-based networks, architectures
[23], authentication schemes [24], and trust monitoring [25]
have been investigated in previous works. To the best of our
knowledge, we are the first to explore large language model-
based multiple agents for zero-trust SAGIN.

2) Network Security Situation: The main technologies used
in the network security situation assessment method include
mathematical statistics, knowledge reasoning [15], [16], [26],
and pattern recognition [27], [28]. As for situation aware-
ness in communication networks, Klement et al. enabled the
MITRE ATT&CK framework to assess threats in 6G Radio
Access Networks [29]. As for zero-trust situation awareness,
Chen et al. proposed a security awareness and protection
system that leverages zero-trust architecture for a 5G-based
smart medical platform, with the environment regarded as a
key dimension [18]. Dai et al. proposed a mobile Internet
network security situational awareness model that incorporates
privacy differentiation analysis and user entity behavioral
analytics [19]. Seaton et al. introduced path-aware risk scores
for access control, which accounts for risks along the network
path that requests traverse from source to destination [30]. Two
key differences between our work and the previous ones are:
1) we develop a simulator to mimic various attacks in SAGIN,
and 2) we propose an LLM-based situation awareness method
for zero-trust SAGIN.

II. OUR SAG-ATTACK SIMULATOR

To simulate highly dynamic and heterogeneous networks
of SAGIN, we develop a SAG-Attack simulator based on
ns-3. The proposed SAG-Attack simulator can generate mali-
cious traffic to mimic the threats in real-world scenarios.
Our platform consists of four components: satellite systems,
aerial networks, terrestrial networks, and a network monitor
comprising multiple detection modules. The key ingredient is
the construction of attack scenarios of satellites and UAVs. We
also integrate a zero-trust platform [31] into our SAG-Attack
simulator. We detail each module as follows.

A. Satellite Systems

We build different types of satellites, including a GEO satel-
lite and several LEO satellites, to comprehensively simulate
various satellite communication scenarios. We have devel-
oped the physical layer protocol according to DVB-S2X. For
various communication tasks, our simulation parameters sup-
port dynamic configuration, including frequency, bandwidth,
modulation mode, etc. Additionally, we have configured the
network and application layers to mimic data transmission
between satellites, as well as between satellites and ground
nodes, facilitating the simulation of diverse application sce-
narios.

B. Aerial Networks

We deploy multiple UAV nodes and equip them with WLAN
protocols to improve the communication capability of ground
users. In addition, we configure the MobilityModel in ns-3
to enable a random walk mobility pattern for these UAVs,
which increases the dynamic nature of the network and better
accommodates different types of network conditions.

C. Terrestrial Networks

The terrestrial networks module includes the ground base
stations (eNodeBs) and the user equipment nodes (UEs).
Among them, eNodeBs are distributed in a mesh topology,
with UEs located around satellites, UAVs, and eNodeBs. We
install the LTE protocol stack for UEs and eNodeBs to enable
communication between them. We can seamlessly integrate
the simulated attack application with this module to launch
attacks on nodes at all layers to simulate real attack traffic
and log messages.

D. Attack Scenarios Simulation

We create a malicious traffic generation application for
each attack and install it on the designated attack node to
simulate attack scenarios in SAGIN. For DDoS attacks, we
create an application that will send a large amount of traffic
and install it on 100 different attack nodes to launch a joint
attack on ground eNodeBs, UAVs, or satellite nodes, to truly
reproduce the cross-layer DDoS attack behavior. Similarly, for
DoS attacks, we install the above application on an attack node
to simulate DoS attacks. For infiltration, brute force, spoofing,
and recon, we also build corresponding malicious traffic
generation applications and install them on specific attack
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Fig. 2. Illustration of situation awareness in zero-trust access control architecture. The Situation Awareness Module aggregates threat information and processes
it through threat information processing. It ultimately generates a security score and integrated strategy provided to the Policy Decision Point (PDP). PDP
comprehensively considers the characteristics of objects and subjects, as well as the security score and integrated strategy, ultimately generating a security
strategy and access authorization. These are then provided to IT assets and the Policy Enforcement Point (PEP).

nodes to simulate these attack behaviors. For the web attack,
we construct numerous HTTP request packets representing
various web attack vectors. These packets are then used in
an application we built to simulate the attacker’s actions.

III. SYSTEM MODEL

As illustrated in Figure 2, the proposed zero-trust SAGIN
is divided into three parts: the SAG-Attack simulator, the
LLM-SA, and the zero-trust access control module. Building
upon the SAG-Attack simulator, the system model section
provides a comprehensive overview of the components of
the LLM-SA model and its application within a zero-trust
SAGIN architecture. The SAG-Attack Simulator is capable
of simulating various types of attacks in SAGIN. The col-
lected threat information is fed into the Zero-Trust SAGIN
framework. LLM-SA then classifies, correlates, and evaluates
the overall network environment, and provides corresponding
security strategies. The security scores and strategies output by
LLM-SA are subsequently fed into the Policy Decision Point
of the zero-trust architecture, facilitating more comprehensive
security decision-making. This model enables the system to
efficiently process and respond to threat information across
satellite, aerial, and ground networks, thereby enhancing over-
all network security through improved situational awareness
and real-time defense capabilities.

A. Zero-Trust Access Control Model

We develop a SAG-Attack simulator based on the ns-3
platform, simulating various attack scenarios to provide data

support for the zero-trust access control model. This model is
based on the zero-trust architecture proposed by the National
Institute of Standards and Technology (NIST) [31]. Unlike
previous works, this paper focuses on the network security sit-
uational awareness module. This module collects information
from the network environment, ultimately generating security
levels and security policies against current network attacks,
which are then provided to the policy decision point. The
policy decision point, based on the principle of least privilege,
comprehensively considers the contextual information of the
access subjects, the importance of the access objects, and the
security levels and security policies provided by the LLM-SA.
Security levels dynamically adjust access control policies, and
security strategies can respond to potential security threats.
The access control policies generated by the policy decision
point are distributed to the policy enforcement point, where
they regulate the access of subjects to objects, enhancing the
security and integrity of IT assets.

B. LLM-Based Hierarchical Collaborative Architecture for
Situation Awareness

As shown in Figure 3, we propose an LLM-based hier-
archical collaborative architecture for situation awareness in
SAGIN. The input is attack information collected from various
detection models. The output is the security level of the
environment and security policies. To address the challenges
of cross-domain threat analysis in SAGIN, our design inte-
grates attack information from satellite, aerial, and ground
networks, enabling the identification of inter-network attack
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Fig. 3. Illustration of LLM-SA. The upper and bottom parts of this figure, respectively, describe the scenarios of intra-network access and inter-network
access. The whole process is divided into threat information processing and LLM-based Multi-agent for security assessment and strategy generation. (Alg. 1:
S&F attack correlation; Alg. 2: SW-PCA for Key Information Extraction; A1, A2, B1, B2, C, D corresponding to each set of correlated attacks).

patterns and enhancing the context awareness of security
policies. Considering the distributed sub-networks in SAGIN,
we define the access within a sub-network as intra-network
access and the access across sub-networks as inter-network
access. Specifically, the process can be mainly divided into
four steps.

1) Threat Information Processing: Detection systems,
including intrusion detection systems (IDS),2 gateways, vul-
nerability scanners, endpoint detection and response (EDR),
and honeypots, are deployed within every sub-network in a
distributed manner to realize real-time monitoring of cur-
rent network conditions. The LLM-based Summarization
Agents extract this multisource threat information into explicit
descriptions of attacks and their corresponding key character-
istics. Assume that there are N distributed sub-networks in
SAGIN, and Ji denotes the total number of threat information
pieces within the i-th sub-network Ni: Di = {dij | j ∈
[1, Ji]}, i ∈ [1, N ], where Di refers to the set of threat
information in Ni, and dij represents the j-th piece of threat
information in Di.

The S&F attack correlation algorithm fa further associates
and clusters the threat information in Ni to generate an attack
correlation graph. The set of connected components Gi within
this graph can be represented as:

Gi = fa (Di | wa
i )

=
{
gik | k ∈ [1,Ki]

}
, i ∈ [1, N ] , (1)

where wa
i is a parameter in fa that controls the relative impor-

tance of semantic information compared to key characteristics
in the correlation decision. gik represents the k-th connected
component in Gi, consisting of elements dij from the set Di

that are similar in both semantics and key features.
Specifically, for inter-network access, we merge elements

from the two sub-network attack correlation graphs and apply
the algorithm fa again to generate a new attack correlation

2Suricata: https://github.com/OISF/suricata

graph representing the inter-network attack correlations. For
inter-network access between sub-networks Di1 and Di2 ,
the union of their threat information Di1,i2 and the set of
connected components Gi1,i2 in the resulting attack correlation
graph can be represented as: Di1,i2 = Di1 ∪ Di2 , Gi1,i2 =
fa(Di1,i2 | wa

i1,i2
) where wa

i1,i2
is a parameter in fa for inter-

network access.
To extract key information and reduce the dimensionality

of the data, we apply a Principal Component Analysis (PCA)-
based algorithm fb to filter and refine the data. The processed
data can be represented as Li and Li1,i2 , which correspond
to intra-network access and inter-network access scenarios,
respectively:

Li = fb
(
Gi | wb

i

)
=
{
lik | k ∈ [1,Ki]

}
, i ∈ [1, N ] , (2)

Li1,i2 = fb
(
Gi1,i2 | wb

i1,i2

)
, (3)

where wb
i and wb

i1,i2
are parameters in fb that control the

information extraction process.
2) LLM-Based Multi-Agent for Security Assessment and

Strategy Generation: A prompt [32] is a piece of text or
instruction given to a language model to guide its response
or to generate a specific type of output. The Prompt Agent
accesses the information of each connected component gik, and
subsequently generates a prompt that describes the problem
to be solved with this set of related threat information. We
abstract the Prompt Agent as a function fc, whose output
consists of a prompt pik for the problem description and a
summary cik of the threat description: {pik, cik} = fc(l

i
k).

Denote Pi and Ci as the collections of prompts and threat
descriptions, respectively:

Pi =
{
pik | k ∈ [1,Ki]

}
, i ∈ [1, N ] , (4)

Ci =
{
cik | k ∈ [1,Ki]

}
, i ∈ [1, N ] . (5)

3) Security Assessment and Strategy: We design a dynamic
LLM-based multi-agent system for security assessment and
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strategy generation. For each pair {pik, cik} and the correspond-
ing expert knowledge in the vector database, an LLM-based
intelligent agent aik is generated to evaluate the threat level of
associated attacks within the connected component, resulting
in a security level sik and strategy tik.

Vector databases store text data and their vector represen-
tations (e.g., word embeddings) in a high-dimensional space.
Based on the similarity between vectors and efficient index
structures (such as trees or hash tables), vector databases can
quickly retrieve texts that are highly similar to the target
text. We incorporate the Common Vulnerability Scoring Sys-
tem (CVSS) [29] in the vector database. When constructing
prompts, we retrieve relevant texts in the vector database and
feed them into the LLM. CVSS decomposes network security
assessment into multiple metrics, covering almost all aspects
of the network security evaluation, thereby enhancing the
systematic and comprehensive nature of LLM-based security
assessments. More details of the CVSS metric are given in
Section IV-A and Appendix A.

The agent is dynamically generated according to each set
of related network attacks currently identified. As the network
environment changes, the agent will also adjust accordingly
to adapt massive threat information in SAGIN. The col-
lection of security levels and strategies can be represented
as vectors Si, and Ti respectively: Si =

[
si1 s

i
2 · · · siKi

]
,

Ti =
[
ti1 t

i
2 · · · tiKi

]
.

Given that each agent generates a security level and strategy
from a distinct perspective, we design a more objective Com-
prehensive Decision Agent, which possesses comprehensive
global information and determines the corresponding weights
Wi for each agent by examining their identities: Wi =[
wi

1 w
i
2 · · · wi

Ki

]
. The Comprehensive Decision Agent inte-

grates the strategies Ti from each agent aik and combines the
prior knowledge contained in the vector database to generate
the final security strategy. The final network security level SLi

is calculated as the weighted sum of the scores from each agent
aik, which can be represented as:

SLi = Si
TWi =

Ki∑
k=1

sikw
i
k. (6)

IV. OUR PROPOSED LLM-SA

We first explain preliminary knowledge of CVSS and then
introduce three algorithms to enhance situation awareness,
including an attack correlation algorithm based on semantic
and feature similarity, a key information extraction algorithm
utilizing PCA and frequency analysis, and a dynamic LLM-
based multi-agent algorithm for situation assessment and
security strategy generation.

A. Preliminary

We apply the CVSS [29] v3.1 standard as an component
within the LLM-SA to enhance the systematic and com-
prehensive nature of the LLM-SA, which will be used in
section IV-D. The CVSS is comprised of three metric groups:
Base, Temporal, and Environmental. We use the Base metric
for scoring. Base metrics represent the intrinsic qualities of

TABLE I
CVSS RATINGS

a vulnerability that are constant over time and across user
environments. This group is further divided into two sub-
groups: Exploitability and Impact.

Exploitability metrics include Attack Vector (AV), Attack
Complexity (AC), Privileges Required (PR), User Interaction
(UI), and Scope (S). Impact metrics include Confidentiality
(C), Integrity (I), and Availability (A). Most of the test
scopes remain unchanged, so we have set the scope vector
to “Unchanged” as the default setting. Detailed description
of metric and numerical values of each metric are given in
Appendix A. ISCBase in Formula 7 denotes Impact Sub Score.
The CVSS score is calculated using the following formula for
the Base Score:

ISCBase = 1− [(1− C)× (1− I)× (1− A)] , (7)
Impact = 6.42× ISCBase, (8)

Exploitability = 8.22× AV× AC× PR× UI, (9)
BaseScore = d(min (Impact + Exploitability, 10)e (10)

Our proposed LLM-SA evaluates each vector within its scope
and assigns a metric value, such as [AV, AC, PR, UI, Conf,
Integ, Avail]. Subsequently, we utilize the scoring formula
outlined in the CVSS standard to compute the BaseScore. We
can convert scores into severity ratings through Table I.

B. Attack Correlation

Algorithm 1 is designed to partition the threat information
dataset Di into clusters based on semantic and feature sim-
ilarities, utilizing a threshold θs to determine the grouping.
Algorithm 1 categorizes the threat information into an attack
correlation graph, which assists subsequent algorithms in
uncovering potential attack correlations.

1. Initialization of Groups: Initially, each piece of threat
information in the dataset Di is treated as a distinct
group: Gi =

{{
dij
}
| j = 1, 2, . . . , Ji

}
, where dij rep-

resents an individual piece of threat information within
Di.

2. Computation of Similarities: For each pair of threat
information (dij1, d

i
j2) in Di, the Algorithm 1 computes

both semantic and feature-based similarities:
The natural language processing (NLP) model for
semantic similarity SMT CALC is employed to cal-
culate a semantic similarity bs which reflects the
underlying connection of the threat information:

bs = SMT CALC
(
dij1, d

i
j2

)
. (11)
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The Extract function Extract([.∗], dij) uses regex pat-
terns to extract key features (β(1), β(2)) from each pair
(dij1, d

i
j2):(

β(1), β(2)
)
=
(
Extract

(
[.∗] , dij1

)
,Extract

(
[.∗] , dij2

))
,

(12)(
|β(1)|, |β(2)|

)
= (m,n) . (13)

The function FTR CALC, measuring the similarity
between strings, is computed between each fea-
ture pair to create a similarity matrix S: Si,j =

FTR CALC(β
(1)
i , β

(2)
j ). Each element of S quanti-

fies the dissimilarity between corresponding features,
forming a comprehensive matrix of pairwise feature
similarity.

3. Weighted Average of Similarity Matrix: The feature-
based similarity, fs, is derived by calculating the
weighted average of the similarity matrix S:

fs =

∑m
i=1

∑n
j=1 S

2
i,j∑m

i=1

∑n
j=1 Si,j

. (14)

We use Si,j itself as a weight to amplify the effect
of high correlation values. Consequently, even a few
similar keywords in the two pieces of information will
be sensitively captured, and the correlation score will be
significantly enhanced.

Algorithm 1 S&F Attack Correlation
Input: Dataset Di, True labels Yi, Similarity threshold θs
Output: partitioned dataset Gi
Gi ← {dij}
for each pair (dij1, d

i
j2) in Di do

bs ← SMT CALC(dij1, d
i
j2)

(β(1), β(2))← (Extract([.*], dij1),Extract([.*], dij2))

for each β(1)
i in β(1) do

for each β(2)
j in β(2) do

Si,j ← FTR CALC(β
(1)
i , β

(2)
j )

end for
end for
fs ←WeightedAverage(S)
single similarity ← a×bs+b×fs

a+b
if single similarity ≥ θs then
δij1 ← δij1 ∪ δij2

end if
end for
Gi ← {δi1, δi2, . . . , δiKi

}
return: Gi

4. Combined Similarity Score and Group Merging: To
integrate both semantic and feature similarities, a com-
bined similarity score single similarity is computed
as a weighted sum:

single similarity =
a× bs + b× fs

a+ b
, (15)

where a = wa
i and b = 1 − wa

i are coefficients
that balance the contributions of semantic and feature

similarities, respectively. If single similarity meets or
exceeds the threshold θs, the groups containing dij1 and
dij2, denoted as δj1 and δj2, respectively, are merged
into δj1: δij1 ← δij1 ∪ δij2. After iterating through all
threat information pairs, the resulting set of groups is
obtained:

Gi =
{
gik | k ∈ [1,Ki]

}
=
{
δi1, δ

i
2, . . . , δ

i
Ki

}
. (16)

Algorithm 2 SW-PCA Key Information Extraction
Input: Data branch set Gi, frequency threshold wb

i

Output: Set of key information Li

for each branch gik in Gi do
for each threat information dit,k in gik do
st ← Extract([.*], dit,k)
Sik ← Sik ∪ {st}

end for
M ← TF-IDF(Sik)
γk ← SW-PCA(M)
FSi

k
← Frequency(Sik)

ηk ← TopC Percent(FSi
k
, wb

i )

for each string sk in Sik do
if δ(sk, γk) > τ then
Li ← Li ∪ {(sk, ηk)}

end if
end for

end for
return: Li

C. Key Information Extraction

Algorithm 2 employs SW-PCA, which assigns weights
based on sensitive words contained in key information, ulti-
mately extracting the most critical components from massive
threat information in Gi.

1. Extraction of Key Information: Each threat informa-
tion dit,k within a subgraph gik is processed to extract key
information based on a predefined regex pattern. The Si
can be denoted as:

Si =

Ki⋃
k=1

n⋃
t=1

Extract
(
[.*] , dit,k

)
. (17)

Here, n represents the number of threat information
within the subgraph gik. The extracted key information
is added into the set Si.

2. Conversion to TF-IDF Matrix: The set Si is converted
into a term-frequency inverse document frequency (TF-
IDF) matrix, M. The TF-IDF value is calculated for each
key information in each threat information, providing a
weight that signifies the importance of the key informa-
tion in the threat information relative to its commonality
across all threat information in the subgraph gik:

M [m,n] = TF-IDF (keyn, threatm,Si) , (18)

where m indexes the key information, n indexes the
key information set of each threat information across
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the set Si and TF-IDF is a function that measures the
importance of the key information in the key information
set of threat information.

3. SW-PCA: Multiply the elements corresponding to
matrix M by the elements corresponding to the weight
matrix SW to obtain the weighted matrix M ′, then use
the PCA algorithm on matrix M ′ to select the most
essential key information.
The weighted matrix M ′ is obtained by multiplying each
element of the TF-IDF matrix M by the corresponding
element in the weight matrix SW:

M ′ [m,n] = M [m,n] · SW [m,n] , (19)

where M [m,n] is the TF-IDF value for key information
m and key information set of threat information n, and
SW [m,n] is the product of the weights corresponding
to all sensitive information contained in the key infor-
mation m:

SW [m,n] = sw1
m · sw2

m · . . . , (20)

where swi
m is the weight corresponding to the i-th

sensitive information contained in the key information
m. And now, the generated matrix M ′ contains weighted
TF-IDF values, which integrate the frequency of each
key information in the overall threat information and
the security importance of each key information.
PCA is applied to M ′ to reduce dimensionality by
selecting the p principal components with the largest
eigenvalues, as represented by γk = {v1,v2, . . . ,vp},
which capture the most significant variance.

4. Frequency Analysis and Key Information Aggrega-
tion: The frequency of each string in Sik is calculated:

FSi
k

= Frequency
(
Sik
)
. (21)

The top wb
i% of frequently occurring terms, ηk, are

identified:

ηk = TopC Percent
(
FSi

k
, wb

i

)
. (22)

This key information is considered to be the most
frequently occurring information globally. The global
significance of the strings is evaluated based on their
alignment with the principal components, quantified by
the projection metric:

δ (sk, γk) =

p∑
j=1

|vT
j sk|. (23)

The key information sk that exceed a predefined thresh-
old τ in terms of their δ value are added to the key
information set Li = Li ∪ {(sk, ηk) | δ(sk, γk) > τ}.

D. Dynamic LLM-Based Multi-Agent for Situation Awareness

In the provided Algorithm 3, we compute the environmental
safety score c by leveraging key data extracted from a specified
pool. This procedure involves a chain-of-thought process with
an artificial agent that processes prompts from this data,
enabling a thorough and nuanced assessment. Subsequently, a

Algorithm 3 Dynamic LLM-Based Multi-Agent for Situation
Awareness
Input: Set of tuples Li containing high-frequency key infor-

mation, Data pool Gi
Output: Environmental safety score c

Initialize c numerator ← 0, c denominator ← 0
Initialize Pi ← ∅, Si ← ∅
for each (lik, g

i
k) in Li × Gi do

pik, d
i
k ← Prompt Agent(lik, g

i
k)

Pi.add(pik), Si.add(dik)
Agenti ← Prompt Agent(pik)
weighti ← Specific Advice Agent(Agenti, Pi)
ci ← Agenti(Si)
c numerator ← c numerator + (weighti × ci)
c denominator ← c denominator + weighti

end for
c← c numerator/c denominator
return: c

score is assigned using established tools and knowledge. This
chain-of-thought method systematically guides the model’s
reasoning process, thereby enhancing its interpretability and
accuracy in problem-solving.

1. Initialization and Data Preparation: Key informa-
tion strings, denoted as Li, are processed to generate
prompts and associated threat information from the
data pool Gi. This step involves an interactive func-
tion Prompt Agent, which translates key information
into a usable format for further analysis: (pik, d

i
k) =

Prompt Agent(lik, g
i
k), where p represents the prompt

derived from lij and gij , and d is the associated
description. Sets P and S store the prompts and data
respectively:

Pi =
⋃
k

{
pik
}
, Si =

⋃
k

{
dik
}
. (24)

2. Agent Prompt Processing: Each prompt pi from the
set Pi is inputted to a function Prompt Agent which
instantiates an agent Agenti for each prompt: Agenti =
Prompt Agent(pi). These agents are collected into a
group Agent group:

Agent group =
⋃
p

{Agenti} . (25)

3. Scoring by Agents: Each agent Agenti is
evaluated based on its ability to interpret and
respond to its corresponding prompt: weighti =
Specific Advice Agent(Agenti, Pi), where the
Comprehensive Decision Agent will give a weight
weighti based on the logical relationship between
the prompts of each Agenti and their respective
importance.

4. Computation of Agent-Specific Scores: After scoring,
each agent will use its corresponding importance score
weighti to weight the ratings based on the descrip-
tion set S. The most important thing is that Agenti
can use the vector database and the CVSS calculator
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TABLE II
PARAMETERS

to give professional, unified, and reasonable scores:
ci = Agenti(Si). The function Agenti(Si) quantifies
the environmental security by the agent Agenti based
on processed data through a series of tools.

5. Aggregate Environmental Safety Score Calculation:
The final Environmental Safety Score c is computed as
a weighted average, where

c =

∑
i (weighti × ci)∑

i weighti
. (26)

This formulation ensures that agents with superior per-
formance exert proportionally more influence on the
score, indicative of their enhanced reliability and accu-
racy in assessment.

The chain-of-thought method, guided by our carefully
designed prompts, maximizes the utilization of available data
under controlled and interpretable conditions. Additionally, it
dynamically adapts to the quality of agent responses, ensuring
the validity and accuracy of environmental safety assessments.

To obtain continuous security assessments, we combine
LLM-SA with the mathematical method NABC [33]. Specifi-
cally, the large number of parameters in the LLMs leads to
longer time intervals between score updates. To solve this
issue, we input the scores generated by the LLM-SA into
the NABC method as initial values. The NABC method then
performs continuous security assessments during the intervals
between updates of the LLM-SA. Compared to using the
NABC method alone, the integration of LLM-SA and NABC
improves the accuracy of the security scoring while main-
taining almost real-time performance. The detailed process of
NABC is shown in Appendix B.

V. EXPERIMENTS AND NUMERICAL RESULTS

A. Experimental Setup

We run our network model on a server with the Ubuntu
20.04.5 operating system, equipped with 64GB of memory,
an Intel(R) Xeon(R) Silver 4210 CPU, and two NVIDIA A40
GPUs. The simulation of attack scenarios is conducted using
ns-3 v3.37. We also deploy and fine-tune the Llama3-8B3

3Llama3: https://llama.meta.com/llama3/

and Llama3-70B models on a server with the Ubuntu 20.04.5
operating system, equipped with 64GB of memory, an Intel(R)
Xeon(R) Silver 4210 CPU, and two NVIDIA A800 GPUs.
Instruction tuning for the LLMs is conducted using the LoRA
(Low-Rank Adaptation) method [34]. Table II lists the specific
parameters of the simulation for our experiments on SAGIN.

For the LoRA fine-tuning, we set the rank r to be 8, the
scaling factor α to be 32, and the dropout rate to be 0.1. All
other parameters for LoRA are set to their default values as
provided by the LoraConfig function in the Huggingface
PEFT library. For the fine-tuning process, we set the learning
rate to 1e-4 and the number of training epochs to 10. The
remaining training parameters are kept at their default values
as specified by the TrainingArguments function.

To simulate the massive communication scenario within
SAGINs, we set up one GEO satellite node, 10 LEO satellite
nodes, 100 UAVs, 200 ground eNodeBs, and 10,000 UEs for
the sub-network. UEs, UAVs, and satellites are respectively
equipped with LTE protocol, WLAN protocol, and DVB-S2X
protocol respectively. UAV nodes and LEO satellite nodes are
configured with MobilityModel. The height of the UAV, LEO,
and GEO satellites is set to 100m, 600km, and 35,786km
respectively. UEs are distributed around the satellites, UAVs,
and eNodeBs in the sub-network.

B. Datasets

As widely used attack datasets in the current cybersecurity
field, CICIDS2017 [35], CICIoMT2024 [36], CICIoV2024
[37], and CICIoT2023 [38] collect the attack data for normal
network scenarios, healthcare IoT scenarios, automotive sce-
narios, and IoT scenarios, respectively. However, these datasets
only contain single-scenario attack datasets for terrestrial net-
works, and they lack data related to attacks on UAV networks
and satellite networks. As shown in Table III, we compare our
dataset (see detailed description in II-D) with the above four
datasets, in terms of attacks in SAGINs, including DDoS, DoS,
Infiltration, Brute Force, Spoofing, Recon, Web Attack, and
Satellite Vulnerability. Our dataset encompasses more diverse
attack types and scenarios than existing ones.

C. Baselines

1) Overall Situation Awareness: We compare our method
(LLM-SA and NABC fusion), LLM-based methods, and
two baseline methods with expert judgment. The two meth-
ods are deep autoencoder-deep neural network (AEDNN)
based method [28] and network attack behavior classification
(NABC) based method [33] respectively use neural networks
to classify attacks, and comprehensively consider the occur-
rence probability and impact of various attacks to give network
security situation scores.

2) Attack Correlation Algorithms: The best model and
algorithm for computing semantic and feature similarity will
be selected based on experimental results. For semantic sim-
ilarity, we consider BERT [39], Sentence-BERT [40], and
SimCSE [41], each of which extends the original BERT archi-
tecture to produce context-aware embeddings that effectively
capture text similarity. For feature similarity, we evaluate
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TABLE III
COMPARISONS OF DATASETS

Cosine Similarity, Jaccard Similarity, and Levenshtein Dis-
tance. Cosine Similarity computes the cosine of the angle
between vector representations of strings, Jaccard Similarity
measures the overlap between sets of characters, and Lev-
enshtein Distance quantifies the minimum edits required to
convert one string into another.

3) Dynamic LLM-Based Multi-Agent: We compare our
dynamic multi-agent LLM with four baseline models, includ-
ing Random, MetaGPT [42], LLM Debate [43], and MAGIS
[44]. The Random method serves as a performance baseline,
randomly selecting answers without any specific strategy or
intelligence. It establishes a benchmark for comparing the
performance of other methods. MetaGPT employs a multi-
agent framework that allows various agents to collaborate on
the same task, thereby enhancing the efficiency and accuracy
of the model.

LLM Debate improves the overall quality of the program by
engaging multiple LLMs in structured debates, allowing them
to question each other’s responses and iteratively refine the
responses through this interactive process. MAGIS employs
a scoring agent to generate CVSS v3–based evaluations of
information and an assurance agent that verifies and approves
these evaluations, requiring revisions until they meet the
necessary standards.

D. Metrics

1) Overall Situation Awareness: We calculate the mean
squared error (MSE) and root mean squared error (RMSE) in
cybersecurity status scores between various methods (includ-
ing LLM, NABC [33], AEDNN [28], and our method) and
expert judgment to reflect the deviation between different
methods and expert assessments. MSE and RMSE are standard
metrics used to measure the average magnitude of errors
between predicted values and observed values. In general, a
lower MSE or RMSE indicates that the predictions are closer
to the actual observed values, reflecting higher accuracy and
precision in the predictions.

2) Threat Information Processing: We calculate the micro-
average recall rate as the accuracy for the grouping results,
which means dividing the sum of true positives (TP) across
all categories by the sum of TP and false negatives (FN) across
all categories, reflecting the difference between the grouping
results of various methods and the grouping results of experts.

3) Dynamic LLM-Based Multi-Agent: We evaluate the per-
formance of the Dynamic LLM-based multi-agent using two
widely-used metrics: relative accuracy and strategy accuracy.
Relative accuracy is a comparative metric used to evaluate

Fig. 4. LLM-based network security situation (NSS) score compared with
traditional methods.

Fig. 5. LLM-based NSS score error compared with traditional methods.

TABLE IV

COMPARISONS OF NSS SCORE

the precision of various measurement or prediction methods
against a known accurate standard. In general, a higher Rela-
tive accuracy indicates that the method is closer in precision
to the standard, suggesting better reliability and performance.
Strategy accuracy is calculated by requiring the model to select
one out of four options, where only one option represents the
correct standard strategy answer while the other three options
are confusing or incorrect strategy answers. It serves as a
measure of the correctness of the model’s choices.

E. Performance

1) Overall Situation Awareness: Figure 4 depicts the tem-
poral evolution of network security situation scores obtained
from our proposed method, expert judgment, the AEDNN-
based method, the NABC-based evaluation method, and the
LLM-based method. The network security situation scores
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Fig. 6. Performance comparisons on five datasets. (a), (b) and (c) demonstrate the comparisons of the accuracy of the attack correlation algorithms. (d) is the
comparison of with and without SW-PCA, (e) indicates the performance among SW-PCA, and (f) shows the robustness of our model with poisoned samples.

Fig. 7. Performance comparisons on different datasets. (a) and (d) are the comparisons of score and strategy accuracy with different LLM-based multi-agent
architectures, (b) and (e) indicate the comparisons among different types of LLMs, (c) and (f) demonstrate the accuracy of the fine-tuned model versus the
unfine-tuned model.

are mainly distributed between 4 and 9. Figure 5 illustrates
the deviation of these methods’ scores from expert judgment
scores over time. It can be observed that the results obtained
using our proposed method exhibit the closest resemblance
to expert judgment, while the results from the other three
methods exhibit greater fluctuations and deviations compared
to expert judgment. Table IV, Figures 4 and 5 illustrate the
real-time environmental scoring curves of our method under
a satellite delay of 100 ms. The close alignment between our
method’s scores and expert scores suggests that the 100 ms
delay has minimal impact on the performance of our approach.

Table IV presents the MSE and RMSE of network security
scores between multiple methods and the expert judgment
model. These error values are significantly lower for our

method compared to other baseline methods, indicating that
our method provides a more accurate and reliable represen-
tation of the cybersecurity situation. Table IV also shows
the MSE and RMSE of our model in a resource-limited
environment with longer update intervals of LLM-SA.

2) Threat Information Processing: Figures 6 (a), (b), and
(c) show the experimental results of our Algorithm 1 in terms
of semantic similarity model selection and feature matching
algorithm selection, tested with datasets from different sce-
narios. The experimental results show that we use different
semantic similarity models and SBert improves the accuracy of
SBert for Bert and SimCSE by 7% and 3% respectively. Com-
pared with other feature-matching algorithms, the accuracy of
our feature-matching algorithm is improved by at least 24%.
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Fig. 8. Training and validation loss over epochs for Llama3-8B (a) and
Llama3-70B (b) on scoring and strategy tasks.

In different scenarios, we give the mean line of the algorithm
accuracy, and the mean value of our algorithm 1 is at least
27% higher than the other baseline models, which shows that
our algorithm has good stability.

We assess the effectiveness of incorporating an SW-PCA
extraction algorithm into dynamic LLM-based multi-agent
systems by comparing their accuracy and processing times.
According to Figures 6 (d) and (e), employing SW-PCA
enhances accuracy by 6.5% and reduces processing time by
approximately 5 seconds. The SW-PCA method effectively
eliminates irrelevant and redundant data while preserving
essential information, thereby sharpening the focus and pre-
cision of vector database queries by mitigating redundant
interference. Consequently, this leads to faster searches and
decreased processing times, highlighting the significant bene-
fits of SW-PCA in terms of both accuracy and time efficiency.
Figure 6 (f) depicts our model’s accuracy across various
proportions of poisoned samples, demonstrating minimal loss
of accuracy under different intensities of poisoning attacks.
This underscores the robustness of our proposed model against
such attacks.

3) Dynamic LLM-Based Multi-Agent: To demonstrate the
superiority of our dynamic LLM-based multi-agent architec-
ture, we compare its performance against other multi-agent
LLM architectures, as shown in Figures 7 (a) and (d).
MetaGPT uses a multi-agent framework that enables agents
to collaborate on tasks, improving efficiency and accuracy.
Meanwhile, LLM Debate raises quality by engaging multi-
ple language models in structured debates, challenging each
other’s responses, and iteratively refining answers through
interaction. MAGIS introduces a scoring agent to generate
assessments and an assurance agent that reviews and val-
idates these evaluations, ensuring that only those meeting
the required standards are accepted. However, these archi-
tectures are tailored to specific tasks. Although cooperative
mechanisms work effectively, they may not perform well in

Fig. 9. Ablation study on score relative accuracy (a) and strategy accuracy
(b) in a single agent and multiple agents.

the SAGIN scenario, where threat information is complex
and heterogeneous. The experimental results show that our
architecture achieves high accuracy, surpassing other archi-
tectures. This advantage is gained from our dynamic agent
generation, which adapts agents based on the prompt con-
text. Additionally, our architecture enhances problem-solving
specificity: the Prompt Agent segments information, Specific
Advice Agents provide targeted strategies and scores, and the
Comprehensive Decision Agent synthesizes the final decision.
These two advantages together lead to the achievement of high
accuracy.

Figures 7 (b) and (c) demonstrate the impact of varying
parameter counts on LLM performance. Our architecture
allows for adjustments in LLM types, revealing a positive cor-
relation between increased parameters and accuracy. Notably,
ChatGPT-3.5, an online model, exhibits longer response times
compared to locally-hosted models. Conversely, models with
fewer parameters achieve faster inference times but at the cost
of reduced performance. This analysis underscores the trade-
off between parameter size and computational intelligence,
with intelligence playing a critical role in governing data anal-
ysis and tool functions, directly influencing overall accuracy.
Furthermore, local deployment of LLMs enhances operational
speeds system stability, and security, with Llama3 showing
superior performance in our evaluations.

We fine-tune the existing Llama-8b model and the Llama-
70b model on the corresponding datasets for rating and
strategy tasks. We divide the datasets into training and val-
idation sets with a ratio of 8:2, meaning that 80% of the data
is used for training, while the remaining 20% is reserved for
validation. We train the models for 10 epochs and monitor their
performance by plotting Figures 8 (a) and (b). This process
allows us to closely observe any signs of overfitting.
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Fig. 10. Case study of LLM-SA. At the top of this figure, an emergency communication scenario is described, which includes three types of attacks: GPS
spoofing attack, Jamming attack, and DDoS attack. The workflow at the bottom indicates that our LLM-based method comprises four agents: Information
Summarization Agent, Prompt Agent, Specific Advice Agent, and Comprehensive Decision Agent.

TABLE V

COMPARISON OF DIFFERENT LLM PERFORMANCE

Figures 7 (c), (f), and Table V show the performance com-
parison of LLMs before and after fine-tuning. The results show
that our fine-tuned Llama-8b model and Llama-70b model
achieve improvements of 55% and 74% in relative accuracy,
and 66% and 53% in strategy accuracy, respectively. Inter-
estingly, the fine-tuned Llama-8B outperforms Llama-70B in
both metrics. Because in scenarios with limited data or lower
task complexity, smaller models often exhibit higher parameter
efficiency and can outperform larger models. Larger models,
despite their strong representational capabilities, are prone to

overfitting and require complex optimization strategies. Con-
sequently, smaller models can accelerate training speed and
enhance generalization performance. However, excessively
small models may lack the necessary capabilities to effectively
utilize tools or understand text. Therefore, matching model
size to task requirements is crucial for optimal performance.
Next, we use the idea of ablation experiments to demonstrate
the advancement of the dynamic multi-agent architecture we
proposed. We remove the dynamics from the multi-agent archi-
tecture, that is, integrate the functions of Prompt Agent and
Specific Advice Agent into Comprehensive Decision Agent
so that Comprehensive Decision Agent directly receives the
output of Algorithm 2 and outputs Integrated Strategy and
Total Score. Figures 9 (a) and (b) show that if the agent
architecture loses its dynamics, the performance will degrade
to varying degrees.

F. Case Study

We consider an emergency communication scenario where
UAVs collect information from an area affected by com-
munication interruptions and upload it to the LEO satellite.

Authorized licensed use limited to: XIDIAN UNIVERSITY. Downloaded on August 21,2025 at 07:25:29 UTC from IEEE Xplore.  Restrictions apply. 



CAO et al.: EXPLORING LLM-BASED MULTI-AGENT SITUATION AWARENESS FOR ZERO-TRUST SAGIN 2243

Fig. 11. Illustration of the semi-physical system of SAGIN networks: It
consists of a real-world radio system and large-scale simulated non-terrestrial
networks. Three servers are an attacker, a victim, and a defender, respectively,
where the former two rely on the proposed SAG-Attack platform, and the last
one is empowered by LLM-SA. We configure the system with well-known
parameters of non-terrestrial networks.

Through inter-satellite and satellite-to-ground communication
channels, the information is relayed back to ground stations
and subsequently transmitted to ground command centers.
Potential cyber threats, such as DDoS attacks, GPS spoofing,
and satellite jamming, are identified by security detection
tools, which are uploaded to the Summarization Agent.

As shown in Figure 10, the Summarization Agent can
understand these unstructured pieces of information (e.g.,
jamming attacks targeting satellites), synthesize them, and
generate key features (e.g., source location) and corresponding
descriptions. We perform attack correlation and key informa-
tion extraction on the four output pieces of information from
the Summarization Agent, categorizing two GPS spoofing
attacks into one class, ultimately resulting in three distinct
lists of key attack information. Using the Prompt Agent,
we generate descriptions and prompts for each category of
information list. By dynamically specifying the identity of
the Specific Advice Agent, we evaluate each category of key
information, achieving an adaptive security assessment. Each
Specific Advice Agent focuses solely on a specific piece of key
information without considering other redundant information
and uses its chain-of-thought capability to generate in-depth
security strategies. Finally, the Comprehensive Decision Agent
considers the number and severity of each type of attack and
weighs the environmental scores from each Specific Advice
Agent to produce a total score. Additionally, it synthesizes
the individual strategies to derive an integrated strategy.

G. Real-World Tests of the Proposed LLM-SA

As shown in Figure 11, we rely on publicly available
datasets [45], [46], [47] that include SAGIN network interfer-
ence and delay to establish an SDR-based Open Air Interface
(OAI)4 wireless communication system for simulating the

4Open Air Interface: https://openairinterface.org/

SAGIN environment. It consists of three servers and two
Software-Defined Radios (SDRs). Two servers function as the
attacker and the victim, respectively, while the LLM-SA is
deployed on a third server running Ubuntu 20.04.4. This server
is equipped with 33 GB of RAM, an Intel(R) Core(TM) i9-
12900 processor (12th generation), and an NVIDIA GeForce
RTX 3060 GPU. The two SDRs facilitate communication
between the victim system and the LLM-SA server.

To evaluate the performance of our method in a real-world
environment, we implement three types of attacks, including
DoS, spoofing, and web attacks on the testbed. We observe
that the performance of security assessment and strategies
decreases from 91.70% and 90.91% to 89.36% and 90.52%
in the real-world tests, representing a reduction of 2.34% and
0.39% compared with the simulation environment, respec-
tively. We calculate the response time from the initiation of
each attack to the activation of our security policy. The average
response time increases from 7.06s to 8.88s compared with
the simulation environment. The experimental results indicate
that the model’s accuracy experiences a slight decrease, while
the response time increases in real-world deployment tests.
To further evaluate the response time of our LLM-SA under
interference conditions, we introduce a jammer into the physi-
cal deployment environment. The experimental results indicate
that the model response time increased from 8.88s to 10.14s
in the presence of signal interference.

Furthermore, experiments conducted on three Jetson devices
demonstrate that the performance of the proposed LLM-SA
method in terms of score and strategy generation is 89.81%
and 89.52%, respectively, with a loss of less than 2%. This
further demonstrates the effectiveness of the proposed LLM-
SA system in real-world scenarios and its feasibility for
deployment on satellites or UAVs.

VI. DISCUSSIONS

So far, we have shown the superiority of our proposed LLM-
SA on five benchmarks. In this section, we take a further step
to highlight some interesting observations, including response
time, generalization of agents, and robustness.

A. Efficiency of Our Proposed LLM-SA

Existing LLM methods significantly harden communica-
tion systems by making more comprehensive and in-depth
security decision-making. However, it is challenging for an
LLM to produce a real-time response. To address this issue,
we first quantize and fine-tune Llama3-8B, a more efficient
LLM compared to ChatGPT-4. While ChatGPT-4 reaches
an accuracy rate of 87%, our method based on Llama3-8B
achieves 91.7% accuracy. Additionally, Llama3-8B decreases
68% response time of ChatGPT-4. More comparisons are
available in Table V. To further minimize response time
and enhance real-time capabilities, we combine LLMs with
mathematical methods in Algorithm 3.

B. Generalization of Our Proposed LLM-SA

Our LLM-SA meets six criteria as discussed in Section I-C
and we conduct experiments to confirm its generalizability.
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Results in Figures 7 (c) and (f) show that the accuracy of our
framework is consistently larger than 90% across five distinct
datasets, indicating that our method can be well-adapted to
various scenarios.

C. Robustness of Our Proposed LLM-SA

To evaluate the robustness of our proposed LLM-SA, we
introduced poisoned samples constituting 20% of the training
dataset generated by the SAG-Attack simulator. Under such a
setting, Figure 6 (f) shows that the assessment accuracy of the
proposed LLM-SA decreased by only 1.5%. This confirms the
robustness of our LLM-SA.

VII. CONCLUSION

This paper studies situation awareness of zero-trust SAGIN.
We present SAG-Attack and LLM-SA to promote SAGIN’s
security. Specifically, the proposed SAG-Attack is a simulator
that aims to mimic various attacks on communication traffic
across satellites, UAVs, and ground networks. Our LLM-
SA is a novel situation awareness method that explores the
chain-of-thought capabilities of LLMs to conduct security
assessments and generate defense strategies. Toward zero-trust
SAGIN in practice, the design principles of the proposed
SAG-Attack simulator and LLM-SA method are adaptive,
learnable, collaborative, pluggable, large-scale, and efficient
so that they can be potentially applied to real-world scenarios.
We conduct extensive experiments on four public benchmarks
to show the effectiveness of the proposed SAG-Attack and
LLM-SA. We also build a more comprehensive dataset on
the SAG-Attack simulator, and this dataset can serve as a
benchmark for zero-trust SAGIN. In the future, we plan to
explore the parallelism of LLMs on resource-constrained edge
devices.

APPENDIX I
DETAILS OF CVSS

CVSS [29] is comprised of three metric groups: Base,
Temporal, and Environmental. We use the Base metric for
scoring. The Base metrics represent the intrinsic qualities of
a vulnerability that are constant over time and across user
environments. This group is further divided into two sub-
groups: Exploitability and Impact. Exploitability metrics are
as follows.

Attack Vector (AV): Describes how the vulnerability is
exploited. Metric Values: Network (N): The vulnerability is
exploitable from remote networks. Adjacent (A): Exploitable
only within the same shared physical or logical network.
Local (L): Exploitable with local access. Physical (P): Physical
interaction is required. Numerical Values: Network (N): 0.85,
Adjacent (A): 0.62, Local (L): 0.55, Physical (P): 0.2.

Attack Complexity (AC): Describes the conditions beyond
the attacker’s control that must exist to exploit the vulner-
ability. Metric Values: Low (L): No special conditions are
required. High (H): Special conditions are required. Numerical
Values: Low (L): 0.77, High (H): 0.44.

Privileges Required (PR): Describes the level of privileges
an attacker must have to exploit the vulnerability. Metric

Values: None (N): No privileges required. Low (L): Low-level
privileges required. High (H): High-level privileges required.
Numerical Values: None (N): 0.85, Low (L): 0.62 (or 0.68 if
Scope / Modified Scope is Changed), High (H): 0.27 (or 0.5
if Scope / Modified Scope is Changed).

User Interaction (UI): Whether a separate user must
participate in the exploitation. Metric Values: None (N): No
user interaction is required. Required (R): User interaction is
required. Numerical Values: None (N): 0.85, Required (R):
0.62.

Scope (S): hether the vulnerability affects resources beyond
the security scope. Metric Values: Unchanged (U): No impact
on other resources. Changed (C): Impacts resources beyond
the intended scope.

Impact metrics are as follows.
Confidentiality (C): Impact on confidentiality of the data.

Metric Values: None (N): No impact. Low (L): Some
data disclosure. High (H): Complete information disclosure.
Numerical Values: None (N): 0. Low (L): 0.22. High (H):
0.56.

Integrity (I): Impact on integrity of the data. Metric Values:
None (N): No impact. Low (L): Modification of data is
possible. High (H): Complete modification of data. Numerical
Values: None (N): 0. Low (L): 0.22. High (H): 0.56.

Availability (A):Impact on availability of the system. Metric
Values: None (N): No impact. Low (L): Reduced performance.
High (H): Complete shutdown of the system. Numerical
Values: None (N): 0. Low (L): 0.22. High (H): 0.56.

APPENDIX II
DETAILS OF NABC

The NABC methodology [33] is employed for detecting
and analyzing attack behaviors as part of the network security
situational awareness process, which unfolds as follows:

Attack Behavior Detection and Analysis: The NABC
framework is initially used to identify and scrutinize various
attack behaviors within the network. This step is vital for
comprehending the nature and patterns of potential threats.

Quantification of Attack Severity: The NABC methodol-
ogy calculates the error probability matrix and the corrected
number of occurrences for each attack behavior to quantify
the severity of attacks. These metrics are then integrated with
the specific attack severity factor for each behavior, resulting
in a quantitative value that signifies the severity of the attacks.

Attack Impact Quantification: The NABC approach
assesses the impact of each attack behavior on the confiden-
tiality, integrity, and availability (CIA triad) of the network.
Quantifying the degree of impact of each attack behavior facil-
itates a clearer understanding of the potential consequences of
these threats.

Network Security Situation Value Quantitative Cal-
culation: By amalgamating the quantified values of attack
severity and attack impact, the NABC methodology derives
a comprehensive network security situation value. This value
numerically represents the overall security posture of the
network.

Network Security Situation Assessment: Finally, the
NABC methodology conducts a network security situation
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assessment. The evaluation level of the network security
situation is determined based on the interval of the network
security situation quantification value. This assessment enables
the categorization of the network’s security posture into pre-
defined levels, supporting informed decision-making and the
formulation of appropriate response strategies.
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