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Abstract
In this paper, we study the generalized quasilinear Schrédinger equation

—div(g*(u)Vu) + gw)g' )| Vul* + V(x)u = (I * |u|”)|ul”u, x € RN,

where N > 3,0 < « <N,W <p< %,V:RN—)Risapotential

function and 1, is a Riesz potential. Under appropriate assumptions on g and V (x),
we establish the existence of positive solutions and ground state solutions.

Keywords Quasilinear Schrodinger equation - Positive solutions - Ground state
solutions - Choquard type

Mathematics Subject Classification 35J60 - 35J20

1 Introduction

In this work, we consider the generalized quasilinear Schrodinger equation

— div(g2 () Vu) + gw)g' )| Vul® + V(u = (g * ulP)ul?2u, xRN, (L)
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where N > 3,0 < «a < N,W <p< %,V : RV — R satisfies some
suitable conditions and I, is the Riesz potential defined by

F(Nz—ol . Ao{

NOREPIMIETN

Iy(x) =

and I" is the Gamma function.
It is related with the existence of solitary wave solutions for the quasilinear
Schrddinger equation:

iw=—Aw+VXx)o—kx, o) —(oP)oAl(o]?), (1.2)

where w : RxRY - C,V:RY - Risa given potential, / : R — R and
k : RN x R — R are suitable functions. For various types of [, the quasilinear
Schrodinger equation (1.2) can be transformed into models reflecting different physical
phenomena. For example, in [24], let [(s) = 1, we can get the classical stationary
semilinear Schrodinger equation. If I[(s) = s, we can see in [16,19,22,29] that the
equation was acquired by fluid mechanics, plasma physics, and dissipative quantum
mechanics. For more background on physics, we can refer to [2,20,23] and references
therein.

Set z(¢t,x) = exp(—iEt)u(x), where E € R and u is a real function. Equation
(1.2) can be reduced to the corresponding equation of elliptic type (see [3]):

—Au+ V@u — Al @u = h(x,u), x € RV. (1.3)

If we take g2(u) = 1 + M, then Eq. (1.3) can be written as quasilinear elliptic
equations (see [32]):

—div(g2()Vu) + gu)g' W) |Vul> + V(x)u = h(x,u), xRN,  (1.4)

As we all know, there are many papers focusing on problem (1.4) and studying the
existence of standing wave solutions for Eq. (1.4) (see [4,32-34]). More specifically,
in [8,9], Deng et al. studied the existence of nodal solutions with variational argument.
Deng et al. [10] found the critical exponents for problem (1.4) and then considered
the existence of positive solutions to Eq. (1.4) with critical exponents. In [11], Furtado
studied the existence of solution in the Orlicz-Sobolev space for problem (1.4) by using
the change of variables and variational argument. What’s more, Eq. (1.4) was extended
to include positive parameter and critical exponents, then Chen et al. [7] proved the
existence and asymptotic behavior of standing wave solutions for the equation. In the
previous articles, most of the authors usually think about a huge class of nonlinearities
g.

In particular, if we set g(u) = +/1 + 2u?, Eq. (1.4) can be transformed into the
following equations:

—Au+V@)u— AwHu = h(x,u), x € RV, (1.5)
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The existence of a positive ground state solution for problem (1.5) was first proved by
Poppenberg et al in [30]. Then, Liu and Wang [24] studied the existence of a solution
of the equation with unknown Lagrange multiplies A in front of the nonlinear term
using a constrained minimization argument. Furthermore, by a change of variables,
Eq. (1.5) becomes a semilinear problem and the existence of it is positive solution in
Orlicz space was obtained by using the Mountain-Pass theorem in [25].

In the previous papers, the authors related the existence of weak solutions of the
problem to the the critical point of the energy functional by limiting some growth
restrictions on /, then we can obtain solutions for a large class of nonlinearities &
by theoretical mechanism of critical points. For Eq. (1.5), if we set h(x, u) = (Iy *
[u|P)|u|”~2u, then it becomes

—Au+ V@) — Awdu = Iy = |ulP)|ul”2u, x e RV, (1.6)

To our knowledge, the Eq. (1.6) mentioned above is usually called quasilinear
Schrodinger equation with Choquard type. According to nonlinear Choquard equa-
tion, it first appeared in S. I. Pekar [31]’s work. Later, Moroz and Van Schaftingen
[26] studied the existence, qualitative properties and decay asymptotics of the ground
state solutions for nonlinear Choquard equation. Moreover, for more articles about
Choquard equation, we can refer to [14,15,28]. Recently, Chen et al. [S] proved the
existence of positive solutions and Chen et al. [6] studied the existence of ground
state solutions for Eq. (1.6), respectively. In [5] and [6], there are difficulties lie in
two aspects. One is that the nonlinearity of equation is nonlocal and the other is that
the energy functional is not well defined. Both of them adopted Liu and Wang’s [25]
approach, considering the change of variables f : R — R given by

fl@) = , —f@) = f(=1).

1
V1I+2f%1)

By the change of u = f(v) of variable, Eq. (1.6) is transformed into a semilinear
problem

—Av+ V(@) f ) f' ) = (o * | @I @IP2F ) f' (), x € RV,

With this method, the two difficulties mentioned above can be solved.

There’s also a lot of work focusing on semilinear problems, and we can refer to
[26,27,35] and references therein. In [35], Tang and Chen considered the following
singularly perturbed problem:

—2Au+Vx)u =%y * Fw) fu), x € RV. (1.7)

The authors proved the existence of a ground state solution of Eq. (1.7) when ¢ was
taken at different values and the nonlinearity f satisfied some suitable conditions, as
well as the potential V. In particular, when ¢ = 1, the result is the improvement and
expansion of Moroz and Van Schaftigen [27]’s conclusions. Moroz and Van Schaftigen
[27] was the earliest one who proved the existence of a least energy to semilinear
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problems. On the basis of Jeanjean [10]’s method, Moroz and Van Schaftigen [27]
constructed a (PS)-sequence that meets asymptotically the Pohozaev identity. With
the related information to the PohoZaev identity, they can ensure the boundedness of
(PS) sequence. And then a concentration compactness argument is used to solve the
problem caused by lack of Sobolev embeddings. However, the approach proposed
in [27] is only suitable for autonomous equations and useless for non-autonomous
equations. Hence, on this basis, Tang and Chen [35] used Pohozaev manifold to study
the existence of ground state solutions of non-autonomous equations.

As far as we know, there are few articles paying attention to Choquard type non-
linearity for generalized quasilinear Schrodinger equations. Hence, motivated by the
previously mentioned papers ( [5,6,35]), we shall study the existence of positive solu-
tions and ground state solutions for Eq. (1.1) using a change of variables and variational
argument. Next, we give the following conditions on V:

(V1) V(x) € CRY,R)and 0 < Vp := inf, v V(x), forall x € RV;

(Va) V(x) < Va, forall x € RV;

(V3) V(x) = V(|x|), forall x € RV;

(Va) V(x) € CL{RN, R), there exist a constant & € (0, 1) and L > 0 such that

N=2* .
WV < | e T O<k<L
afV(x), if |x|>1L;
(V5) V(x) is 1-periodic in each variable of xy, - - - , xp.

In addition, we assume that the nonlinear term g € C L(R, (0, +00)) is even, g(0) =1,
non-decreasing in [0, +00) and satisfies

t
2 = lim £ ¢ (0. 00).
t—oo t

and

tg'(t) -

Pi= s

The Eq. (1.1) is the Euler—Lagrange equation of the energy functional
1 2 2 2 1 + +
Jw) = | @ IVul"+V@u?) — — [ a*lu"[")|u™|P,
2 JrN 2p JrN

where u™ = max{u, 0}. Unfortunately, the energy functional J is not well defined
forallu € H! (]RN ) if N > 3. To solve this problem, we use the change of variables
v = G(u), where G(t) := fot g(t)dr, then Eq. (1.1) will become

G_l(v) _ -1 P
—AU—I—V(x)m = e x |G (0)|")

G~ ()1P72G " (v)
g(G71(v))

,xeRN,

(1.8)
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and J (1) can be reduced to

10 =3 [ Vo +vwleT P - o= [ s ioT whIniGT e

Obviously, the energy functional I is well defined in H!'(RY). It is easy to see that if
v e H'(RV) is a critical point of I,

(I'(v) )—/ VoV +/ V(x)ﬂ
T Jan T v T e T

_ |G~ (wh)|p~!
_ Loty p
/RN(I"‘*'G @) 2 G ¥,

forallp € C§° (RM), then v is a weak solution of (1.8), that is, u = G~ ! (v) is a weak
solution of (1.1).

Remark 1.1 Let

\/1+52, lf 05351’
g&) =1L +1), if s> 1,
g(—s), if s <O.

or
gls) =+v1+ks? k>0.

By a simple computation, it is obvious that the functions mentioned above satisfy the
above conditions for g.

The main result of this paper is stated as follows:
Theorem 1.2 Suppose that N > 3, W <p< % and the potential function
V satisfies (V1), (Vo) and (Vs). Then, Eq. (1.1) possesses a positive solution u €
HY(RV).
Theorem 1.3 Assume that N > 3, <p< % and the potential function
V satisfies (V1) — (Va). Then Eq. (1.1) possesses a ground state solution.

2(N+a)
N

Notations In this paper, we need the following notations:

o let D'2RY) := {u € LY ([RY) : Vu € L%R")} with the norm ||u||2DL2 =
S IVul?;

o H'RY) := {u € L*RN) : Vu € L*RY)} with the norm [lu|? := |lu]}, =
Jen (Vul? 4+ u?);

o theembedding H'(RY) — L*(R")iscontinuous fors € [2,2*]and H! (RY) —
L*(RY) is compact for s € (2, 2%);
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H'RY) — L% (RV) if and only if N+°‘ <gq< N+ﬂl

L?(RY) denotes that the usual Lebesgue space w1th norm |lu|, = ( fRN |u|1’)%
where 1 < p < o0;

Jrn ® denotes [y & dx;

we use C or C; to denote various positive constants in context.

The outline of the paper is as follows: in Sect. 2, we prove Theorem 1.2 by using
the mountain pass theorem. In Sect. 3, we give the proof of Theorem 1.3.

2 Proof of Theorem 1.2

As quoted in the introduction, Eq. (1.1) is formally the Euler—Lagrange equation
associated with the functional

1 1 1
"> —f gz(u>|w|2+—/ Veou? — —f (Lo # W)t
2 JrN 2 JrN 2p Jry

Since it is not well defined in H'(RY), we shall follow [32] and use the change of
variables v = G (1), where the function G is defined as G(t) := fé g(t)dr. Next, we
list some of the important properties of function G~!.

Lemma 2.1 [11] The function G=' € C*(R, R) satisfies the following properties:

(g1) G~isincreasing;

-1y 1
(8 0 < (G™(1) = gty <
(g3) |G~L(0)| < |t], forallt € R;

(g4) limy o S0 = 1;

1
(g5) lim; 1+ (G—I(Et))) = g%o;

(86) 1 <%0 <2and 1< S7OLETD) <3 forallt #0;

(g7) % is non-decreasing in (0, +00) and |G~V (1)| < (2/g00)/*Vt], for all
t e R;

(g8) IG™ ()| =

<1, forallt € R;

G '), 11 < 1
G, It > 1

(g9) g(t) is increasing and |g(t)| %o,for allt e R;

(g10) the function [G~Y(1)1? is convex. In particular, [G~(st)1? < s[G~V ()% for
allt e R, s € [0, 1];

(g11) [G™ (s <s2[G YO forallt eR, s > 1;

©12) 1671 — NP =4 (G- P + G0 P).

Lemma 2.2 [23] (Hardy-Littlewood-Sobolev inequality) Letr,s > land0 <o < N
be such that

I 1
-t - —
r N

o
— =1
N
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Where f € L"(RN) and h € L*(RY), there exists a constant C, independent of f, h,

such that
h
[/ SO 1), pnl,.
RV JRV |x — ¥

Next, we prove that the functional / exhibits the mountain pass geometry.

Lemma 2.3 There exist C; > 0, p; > 0 such that
[, (9o + vl @P) = cilvlk, ol < . @)

Proof Similar to [12], by contradiction, assume that (2.1) is not true, then for all n,

there exists a sequence {u,} 7 0 such that [ju,| < Z’ we have

/ (Vs + VLG ) P) <
RN n

which can deduce that

/ |Vun|2+/ V()C)[G—l(um2 1
ey llunl?  Jry lunl> = 0

IA

let v, = H“n” , we can get
> > (G~ ) ) _ |
(Vo |” + V(x)v,) + Vil ——— 1)y, = -.
RN RN u% n
Since as n — o0,
u, > 0a.e. x GRN,
u, — 0in L>(RY),
meas{x € RN : luy(x)| > ¢} — 0 forall ¢ > 0.
Hence, by the Holder inequality,
2 1-2
Joni= (L) ([,.0)
[up|>e [up|>e [up|>e
= (meas{x € RN : |up ()] > D)= - Jual? = 0, 2.2)

where N > 3, r = 2%,
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Since V (x) and {v,} are bounded, it follows from (g4) that

-1 2 -1 -1
[ V(x)<[G ) _1)05:/ V(x)(G (un>_1> (G (un)H)Ug
RN uy RN Up Up

— 0, as u, — 0.

So |[va]l = 1 and v, — 0in H'(RY), a contradiction. This completes the proof of
Lemma 2.3. O

Lemma 2.4 There exist py, o« > 0 such that
I(v) >, forallve [v e H'®RY) : |v| = ,00}~

Proof Notice that NN—fa € (2,2%). By (g7), (2.1), Hardy-Littlewood-Sobolev inequal-

ity and the Sobolev embedding theorem, we get

G 1 1, + —1, |7
1= Sk =2 [ (1 x167 00r) |67 o)

Cy L p
> —|vlI* - C2 (/ Iy * |v|2) v|2
2 RN

N+a

Ci Np N
—vl* - C> (/ |v|N+a>
2 RN

Ci
7||v||2—cz||vn"

Ci _
vl (7 - C3lvl|? 2) :

Choosing pp small enough, we get the proof. O

v

v

v

Lemma 2.5 There exists vg € H'(RN) such that ||vo|| > po and I(vy) < 0.

Proof By (g¢), Gitl(t) is decreasing for + > 0. Consider ¢ € C(‘)X’(RN) such that

0<¢px)=<1,¢(x) <1for|x] <1, ¢(x)=0for|x| > 2. We have

Gl 1p(x) = G LD (x),

for any x € RV, r > 0. Using (g3), we get
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1) = [ veP+E [ vooreue?
N 2 RN 2 RN *

1
——/ Iy % 1G ap)IMIG ™ (tg)|”

1 2p
5—/ o+ /Rvmqsz ¢/ (o * 917117

G 1 4
< tz <C1II¢II2 [Iﬂ (G (P 4)

By p > 2 and (gg), we deduce that I (fo¢) < 0 and 19||¢|| > po for 79 large enough.
Set vy = 9@, hence vy is required. O

By [37, Theorem 6.3], combining Lemma 2.4 and Lemma 2.5, there exists a
sequence {v,} C H'(RN) satisfying that 7 (v,) — c and ||[I'(vy) | (lvxll + 1) — 0,
which is called Cerami sequence.

Lemma 2.6 All Cerami sequences for I at the level ¢ > 0 are bounded in H' (R™).

Proof Let {v,} C H'(RM) be a Cerami sequence at the level c. Set w, :=
G (v g (G~ (vp)). It follows from (g») and (ge) that

2 2
/len| 54/N|vn|a
R R

—1 -1 2
/ |V(,()n|2 :/ [1 + G (Un)g_l(G (Un))i| |an|2 < 4f |an|2’
RN RN 8(G~ (vn)) RN

and
(1" (W), wn)| < C | I'wn)|| (lvall + 1) = 0, as n — oo.
It follows that {w,} ¢ H'(R") is bounded. Therefore,
1
c+on(l) > I(v,) — p(l (vn), )
1 2 1 —1 2
== [Vuu|= + = V()G (va)]
2 RN 2 RN

_i/ (e % 1IG WNHIMIG (w,HIP
2p Jrw

2p g(G~(vy))
1 -1 2
_2_/ V)IG™ (vl
P JRN

-1 -1 2
_L |:1+ G (v)g'(G (Un))] |an|2

1
+—/ (L % G WHINIG W7
2p RN
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> <l - l) (/ |V, +/ V(x)[G_l(Un)]2>-
2 p RN RN

Since p > 2, the sequence { [pn [Vva|> + [pv V(1)[G~!(v,)]?} is bounded. Obvi-
ously, both [px [Vv,]? and [pn V(x)[G™!(v,)]* are bounded. By the Sobolev
embedding theorem and (gg), we have

/ |vn|2=/ |vn|2+/ |va|*
RN {lv|<1} {lv]>1}
0 . 1-6
sclf |G—1<vn>|2+(/ |vn|> (f |vn|2)
{lv|<1} {lv]>1} {lv|>1}
0 . 1-6
sclf |G—1<vn>|2+</ [G—l(vmz) (/ |vn|2>
RN {lv|>1} RN

0
<G / V(x)[G—l(vn>]2+cg(/ V(x)[G—l(vmz)
RN RN

(1-0)-%
( / |an|2) <cC,
RN

where 6 = %:—:% Hence {v,} is bounded in H!(RN). O

In the following, let us assume that {v,} C H L(RM) is a Cerami sequence for
I at the level of ¢ > 0. By the preceding lemma, {v,} is bounded. Hence, going if
necessary to a subsequence, there exists v € H'(R") such that v,—v € H'(RN),
vy (x) = v(x) ae.x € RV and v, — vin L] (RVY) for all ¢ € (2,2*). Then, we
have the following Lemmas 2.7 and 2.8.

Lemma 2.7 Up to a subsequence, there exist R, B > 0 and {x,} C ZN such that

liminf/ vl > B.
n—00 Bpr(x,)

Proof If Lemma 2.7 is false, then it follows from the [36, Lemma 1.21] that, up to a
subsequence,

vy = 0 in LS(RY), s € (2,2%).

Hence,

[, (s topi)ictwpr e ([ wi®) o
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where 2 — 2 = 1.Since G~ (v,)g(G ™" (vy)) is bounded in H'(RY) and |1’ (v,)|| —
O»

-1 4 -1
G (Un)g_l(G (Un))> |an|2
g(G~ (vn))

+ / V)IG )]
RN

(1), 67 g (G ) = /R ) (1 +

—/ Iy % IG WHIMHIG wHI1P — 0.
]RN

Since g € C!(R, (0, 400)) is even, g(0) = 1, non-decreasing in [0, +-00), it is easy

-1 ’ —1
to check that M > 0. Then, we obtain
(G~ (vn))

/ |Wn|2+/ VIG™ (w)?
RN RN

G~ (wn)g (G () ) L
=< /RN (l + 2(G (o)) >|an| +/RN VOIG )] — 0.

It follows that

1
cton() =1(vy) == (f Vo, |* + V<x)[G—1<vn>]2>
2 RN
1
——/ (I % |G (wHINIG wHIP — 0,
2p RN
which is a contradiction. The proof is completed. O

Lemma 2.8 (I'(v), ¢) = 0 forany ¢ € CRN).

Proof Forany ¢ € C{° (RM), the support of ¢ is contained in B Ry (0) for some Ry > 0.
Hence

[(I'(vn) = I'(v), )| <

/ V(vn—v)Vgo‘
RN
G~ (vn) G (v
V —_
./RN (X)<g(c—l<vn)) sGTwy ) *

—1¢, 4y p—1
N [ o L ISR
./]RN [(la*lG (vl )757((;71(1);)) g *|G7 (v)]7)

—+

+ S
g(G~1wt))

|G—1<v+)|1’—1} ‘
=0N+DL+13.

For I} := | [pn V(vn — v) V|, since v,—v in H'(RY), I} - 0as n — oo.
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—1
For I, := ‘fRN V(x) (g(c(;;,l((vl:‘n))) g(% 1(v))> go) by (g2) and (g3), we have
2)

2 -1
< ’ G 1( Un)
8(G~(vn))
Byv, — vin Ll2 e (R™) and the Lebesgue dominated convergence theorem, we obtain

G ()
g(G~1(v)

‘ G (vy) G~ (v)

2
¢(G(w)) &G () ‘

< 2(lva* + [v]?).

_ _ 2
i G () G (v
im ; — =
=% J By, (0) g(G n)  g(G(v)
Using (V») and the Holder inequality, we have
G () G
h < Ve f o) O W
By 18(GT (wn))  g(GTH(v))
1 1
G,] G,] 2\ 2 2
<V / 1(vn) _ 1(v) / 2] = o.
Br, 0 18(G™(vn))  g(G™H(v) By (0)
as n — 00. Moreover,
Lo G DI R (e O | L
I3: ‘/ [(la*IG 1P <G00 (e % 1G™ (DIP) s Ty |¥

L N (A (A

Iy G—l +y (P
< [ e 167 DI e e T (7
1o +yp—1 —1+y p—1
Ll lahp! / L G )
/ g *1G~ (0;)17) 2(G- 1(u+)) RN(IO’*lG @MIF) <G ®

=J1 + Jp.

For r = 2. by (g7). (89).

G-l whHPt G WPt |72

2(G~1(vh) g(G1(vt))
- e (‘ G- W HIP2G () |72

' G~ wHP2G T (vh)
g(G-1(v1))

pPr
p2>

g(G71w))

pr
p—2 >

=G (\[G—l(v,m"—2

Cs (Ioal % +101%).
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Sincew <p< Z(IC’JF;), 2 e (2,2%).Byv, — vin L] T (]RN) and the Lebesgue

dominated convergence theorem we obtain

. G-l wHP! |G Pt
lim — = 0.
Gl G

n— 00 Bg,y (0)

By the boundedness of {v,}, ¢ = 0 on B;eo (0), the Holder inequality and Hardy-
Littlewood-Sobolev inequality, take n — oo,

IGTtehIr 16T e P!
gGlwh) 8GN
L L [ o | L
gG'wh)) 8GN

pr
|Un |2
B, (0)

I = / (I + G~ (D7)
RN

</ ) (e

ol

1
r r
|¢I’)

Lo Crpl G Cd Ll i
sG )  gGwn) | 7

, 1

f |<p|’)
/ Lo U Co T Ll W
by | 2Gwh)  gGwhy | Y

L L (o o

g(G~1(w) g(G~1(w))

By, O

~|—

2
alf | whirt 6T whiet ) 7 [ % :
b | 2G| gG W) Bro®

p=2
/ [t Cro Lo ey U Lok WA
Br,@ | g(G ') g(GT'(w) ’

2(N+a)

where r = 2L For r = < p < x5~ (89) and the Holder

. . Nta-: N+oz °
inequality, we have

[

by 2(N+a)

r

< cf G P )
RN

(p=2)
C/ v
RN

|G (wh)|P~!
2(G 1w ¥

IA
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(p—=2r

=Cllp” ol
2 2

It follows from 2 € (2, 2*) that % e L' (RV).
To prove J, — 0, we use an argument which is partly an adaptation of the proof

of [27, Proposition 2.2]. Set a linear functional

. _/ P e fwhr!
() ( G

Then, by Hardy-Littlewood-Sobolev inequality, T : Lr(RN ) — R, where r = Igiva,
is a continuous linear functional, that is,
1
r\ r

T < C (fRN W): (/RN

As {v,} is bounded in H'(RY) and |G~'(y)|”" < Clv,|7. the sequence
(|G_1(v,f)|”) is bounded in L"(RY). We may assume, going if necessary to
a subsequence, |G~ (v;)|P—=|G~ (v ")|? in L"(RY). Then T (IG~'(v;)|7) —
T (IGT'(wh)|P) asn — oo, that is,

|G~ h)|P~!
g(G~1(vT))

_ |Gt P!
14y P
/RNua*m O e P
_ G~ wH)|P~!
_ Loy P
fRN(Ia*m OO Gy ¢ =

Therefore, I3 = J1 + J» — 0 as n — oo. In a summary, up to a subsequence, we
prove that (I’ (v,) — I'(v), ¢) — 0asn — oo. Since (I'(v,), ¢) — 0, we have

(I'(v), ) = 0.

The proof is completed. O

Proof of Theorem 1.2 As a consequence of Lemma 2.4 and 2.5, for the constant

co = 1nf sup I(y(t)) >0,
rel 10,1

where
={y e C([0, 11, H'(RY)) : y(0) = 0, I(y (1)) < O}

Hence, by [37, Theorem 6.3], there exists a Cerami sequence {v,} in H L(RN) at the
level cg, that is,

I(vy) = co and (1 + |lva DI (va)]| = 0, as n — oo.
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By Lemma 2.6, up to a sequence {v,} is bounded. Hence, up to a subsequence, one
has v,—v € H'(R"), v,(x) - v(x) ae. x € R¥ and v, — vin L] (RV) for all
q € (2,2%).

By Lemma 2.7, up to a subsequence, there exist R, 8 > 0 and {y,} C Z" such
that

liminf/ vl > B.
=00 JBr ()

Define w, (x) = v, (x + y,) so that

liminff lwp]? > B > 0. (2.3)
n—o0 BR(O)
Since V (x) is periodic in x, we have ||w,| = ||v,|l and

I(wy) — co and (1 + |l DI ()| — 0, as n — oo. 2.4)

Up to a subsequence, one has w,—w € H'(RY), w,(x) = w(x) ae. x € RY and
wp — win L] (RV) forall ¢ € (2,2*). Hence, it follows from (2.3) o is nontrivial.
Similar to the proof of Lemma 2.8 and (2.4), we can obtain I’ (w) = 0. This shows that
w € H'(RY) is a nontrivial, nonnegative, weak solution of (1.8). According to the
strong maximum principle [13], @ > 0 in RV, This completes the proof of Theorem
1.2. O

3 Proof of Theorem 1.3

In this section, we would like to complete the proof of Theorem 1.3.

Theorem 3.1 [17] Let (X, | - ||) be a Banach space and 1 C Ry is an interval.
Consider the following family of C'-functionals on X :

L,(v) = A(w) —AB(), A el,

with B is nonnegative and either A(v) — 400 or B(v) — 400 as ||[v]] — oo.
Suppose that there are two points vy, vy in X such that

¢, = inf max L, (y(t)) > max{[l, (vy), I (v2)} for all A €1,
yel, te[0,1]

where Ty, = {y € C([0, 1], X) : y(0) = vy, y (1) = v2}. Then for almost every A €1,
there is a sequence {v,} C X such that

(1) {v,} is bounded,
(i) Li(vn) — e,
(iii) I{(v) — O in the dual X' of X.
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Moreover, the map A +— c;, is non-increasing and continuous from the lefft.

Letl = [%, 1]. We define the following energy functional
1
L(v) = E/RN('V”'” V(0v?)

—2 / (1V(x><v2 — 167w + i(la * |G‘<v>|P>|G‘<v>|P) ,
RN 2 2[7
3.1

where A € I. Then, let A(v) = § [pn (IVVI? + V(x)v?) and
1 B 1 B _
B(v) = f VO =[G + — U * G WINIG )7 ).
RN 2 2[)
Let ||v|| = oo, then A(v) — +00. Moreover, B(v) > 0.

Similar to [26,36], we can get the following PohoZave type identity.
Lemma3.2 Ifv e H'(RVN) be a critical point of (3.1), then v satisfies

N -2 N
Po(v) = Jan |W|2+%/ (VV(x)~x>[G*‘(v)]2+—/ VIG w1
]RN 2 RN

(Nt ao)r

f (I *1GTTIPNG )P = 0.
2p RN

Lemma 3.3 Assume that (V1)-(V3) are satisfied.

(i) there exists v € Hr1 (RM\{0} such that I (v) < O forall » € 1;
>i1) ¢, = in}“ HE(E)Di] L, (y(t)) > max{I,(0), I (v)} for all . € 1, where
yel tell,

Iy ={y € C(0, 1], H'RY)) : y(0) = 0, y (1) = v}.
Proof (i) Letv € H,1 (RM)\ {0} be fixed. Forany » € I = [%, 1], one has
L(v) < I%(v)

=1/ |W|2+1/ V()@ -G ()1
2 RN 4 ]RN

1
+—f (o %16 @INIG )7,
4p RN
As the proof of Lemma 2.5, we have

2 1
1) < ’5/ (VP + V(0)¢?) — —/ (L #1G (H)I)IG (1))
RN 4p RN

2 G—l 2p—4 Gl
5%[/ (19612 + Vinyg?) - GO 16701 /(1 *I¢\”)|¢|”].
RN 2p
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It follows that I (t¢p) — —oo as t — +o0. Thus, there exists a o > 0 such that
I, (to¢) < 0. Then, taking vy = t9¢, we have I, (vg) < O forall A € 1.
(i) By Lemma 2.3 and 2.4, we can get

I.(v)

v

1 1
—/ (V] + V@IGT )] — —f (e * 1IGT @W)IMG™ ()|
2 JRN 2p Jry

Cl[vlI*> = [v[I7). forall [v]| < pi.

v

Since p > 2, we deduce that [, has a strict local minimum at O and hence
c, > 0. O

By Theorem 3.1, it is easy to know that for a.e. A € [%, 1], there exists a bounded
sequence {v,} C H,1 (RN) such that I (v,) — ¢ and Iﬁ(vn) — 0, which is called
(PS)-sequence.

Lemma3.4 If{v,} C Hr1 (RN) is the sequence obtained above, then for almost every
A € 1, there exists v), € Hr1 (RN)\{O} such that I) (v)) = ¢, and Ik’(v,\) =0.

Proof Since {v,} ¢ H'(R") is bounded, up to a subsequence, there exists v, €
Hr1 (RN) such that v,—vy, in HY(RM), v, — v, in L(RY) for all s € (2, 2*) and
v, — vy a.e. in RY. By the Lebesgue dominated convergence theorem, it is easy to
check that I )/L(v)\) = 0. Next, let us first prove that there exists C > 0 such that

—1 —1
/RN [W(vn —m)\2+V<x)( G ) G ) )(vn —m} > Cllvw - wall®

G 1w))  g(G(w)
(3.2)

Similar to [12,38], we assume v,, # v, (otherwise the conclusion is trivial). Set
G~ ') G~ ')

Up — U -1 T g(GTT
_ U * and h, = 8(G™ (W)  &(G™ (i)
v — vall Un = Va

Wp
We argue by a contradiction and suppose v,,, v; may be found such that
/ |Van|? + V(x)h, (x)w> = 0.
RN

Since

d < G ') ) _g(GT0) — G g (G (1)

- = > 0,
dr \ g(G=1(1)) (G~ (1)

is strictly increasing and for each C > 0, there exists § > 0 such that

i(G—l(’))>5 (3.3)
dr \g(G=l(1)) = 7 '
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as |t| < C. It’s easy to see that &, (x) is positive if w,(x) # 0. Hence
/ |[Van|> — 0 and / V() hy (x)w? — 0.
RV RV

Because [|w, || = [pv ([Vou*+V (x¥)w?) = 1, [pv V(x)®? — 1.ForagivenC; > 0,
let A, = {x € RN : |v,(x)| = C; or |vy(x)| = C1}, B, = RN\ A,,. Then for each
& > 0, C1 may be chosen so that the measure |A,| < ¢. It follows from (3.3) and the
Mean Value Theorem that

8 / V(x)w? < / V() (x)w? — 0. (3.4)
n Bll
Choosing ¢ small enough and arguing as in (2.2) (with the same r), we have

(3.5)

N =

2 r=2
VX)w, < Crem <
Combining (3.4) and (3.5), we obtain
2 2 2 1
Vx)w, = Vx)w;, + Vx)w, < = +o(1),
RV B, Ay 2

a contradiction. The proof of (3.2) is completed.
Moreover, using Hardy-Littlewood-Sobolev inequality, (gs), (g7) and the Holder
inequality, we deduce that

G~ (w)P2G (vy)
g(G1(vy))

p 2_q
SC/ o * [va| 2)|vn] 27 g — va
RN

(v — 1)

‘/ (I G )P
RN

1

1 1
P r p=2 r
<C / [vn|2" / (v 2 "uy — ol
RN RN

2\ 7 2 o«
§C</ Ivn—vxl’z) -0, —-——=1 (3.6)
RN r N

In the same way, we can prove that

G~ () P72G~ ()
2(G~1(vy)

'/RN(Ia « |G )I?) (v — ;)| — 0. (3.7
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Thus, it follows from (3.2), (3.6), (3.7) that

0 <« (I (vp) — I} (v3), vy — V1)

G Y, G Y
_ RN _ _
‘fRN['V(U" vl +V(x)(g(c‘(vn>) g(G‘(zm))(”” ”)}

-1 -1 -2
_/ (o #1671 7y ELIG )l
RN

g(G=1(vy))
> Cllvn — vilI> + 0, (1),

(vn — 1)

which implies v, — vy in H!(R"). Thus, v; is a nontrivial critical point of I; with
I, (vy) = cy. O

Lemma 3.5 Assume that (V4) hold. Then, we have the following inequality:

(a+2>/ |va,,|2+/ [V (x) = YV () - 1[G (03,1
RN RN

za/ IVvA,,I2+(1—9)a/ V()IG™ (v,
RN RN

Proof By Hardy’s inequality [1]

/ |VM|Z>M/ i
RN - 4 rN |x|%

we deduce that

(N—2)2/ (G ()]
RN

—1 2
. - S/RNIV(G W)

1
— vV ? 3.8
/RN G Ty ! G8)

2
S/ Vv, |~
RN
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From (V4), (3.8), we have

(a+2>/ Iva,1|2+/ [@V(x) = VV(x) - x][G~ (v3,)T
RN RN
= (a+2)/ |v%|2+/ [aV(x) — VV(x) - x][G (v, )]?
RN O<|x|<L
+ / [V (x) — VV(x) - x][G (v3,)T
[x|>L
> (@+2) / Vo, P+ / aV(OIG (0x)P
RN RN
-2 / Vs, 1> — / afV(@)[G (v,)T
RN RN

:a/ [V, | + (1 —e)af VLG 1P
RN RN

The proof is completed. O

Proof of Theorem 1.3 At first, by Theorem 3.1, for a.e. A € I = [%, 1], there is a
vy € H(RV) such that v,—v; # 0in H'(RV), I; (v,) — ¢; and I} (v,) — 0. Then,
by Lemma 3.4, we get I, (v)) = ¢, and I)i(vx) = 0. Thus, there exists {A,} C [%, 1]
such that A, — 1, v;, € H'@RN), I, (v3,) = ¢;, and I} (v3,) = 0. Next, we
prove that {vy, } is bounded in H,1 (RM). In fact, from Lemma 3.3, I 1 (Un,) <c 1 and
Ii,, (vx,) = 0, it follows that

€1z L, (v;,) =1, <UA,1 — Pxn(vxn)>

N+«

— 1 2
“gra (42 v

+[ [aV(x) — VV(x) ~x][G_1(vAn)]2>. (3.9)
RN

By (3.9) and Lemma 3.5, we get

(1-0)x

o« 2 N T —1 2
o2 s L1V s [ V@IGT )P G

By Sobolev inequality, (V1) and (gg), it follows that

2 1 —1 2
v, < — V@)IG™ (vy,)]7,
v, <1 Vo Jrw
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and

2*
2
2 2% 2
/ vknff anfc</ |van|> .
[va, |>1 [va, 1>1 RN

Therefore,

1
/ ”%n Z/ U%,, +/ Uin = VIG (v,)1?
RN o, 11 EWES! Vo Jry

*

27
+C </RN|V%|2) ) (3.11)

According to (3.10) and (3.11), we infer that there exists a C > 0 such that
f]RN v%n < C. Hence, there is a constant C > 0 independent of n such that
lva, ||2 = fRN(WUM |2 + vfn) < C. Then, we can suppose that the limit of 7, (v;,,)
exists. By Theorem 3.1, we know that A — ¢, _is continuous from the left. Therefore,
we can get 0 < nlingo I, (vy,) < c%. Then, using the fact that

I | _ _
"2 / Iy % 1GT (a)IMIG ™ (w17,
4 RN

I(vy,) = L, (v;,) +

IG~ (W, )17~}

8(G~1(v,) ’

('3, ) = (I}, (03,). 8) + G — 1) fRN(Ia 16~ w)I?)

for any ¢ € CgO(RN) and [|v;,]l < C, it follows that lim I(vy,) = ¢ and
n— oo

lim I'(vy,) = 0. Up to a subsequence, there exists a subsequence {v;,} denoted

n— oo

by {v,} and vo € H!(RN) such that v,—vg in H!(RY). Preceding the same method
as Lemma 3.4, we can obtain the existence of a nontrivial solution vy for 7 and
I'(vg) =0 and I(vg) = cy.

To seek ground state solutions, we need to define m := inf{I(v) : v # 0, I'(v) =
0}. By Lemma 3.2, it follows that P(v) = P;(v) = 0. From (3.10), we have m > 0.
Let {v,} be a sequence such that I’ (v,) = 0 and I (v,) — m. Similar to the discussion
in Lemma 3.4, we can prove that there exists v € Hr1 (RN) such that I'(v) = 0 and
1(v) = m, which shows thatu = G~} (D) isa ground state solution of (1.1). According
to the strong maximum principle [13], % > 0 in RY. Theorem 1.3 is proved. O
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